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Abstract

A nanoscale continuum theory is established based on the higher order Cauchy–Born rule to study the mechanical
properties of carbon nanotubes. The theory bridges the microscopic and macroscopic length scale by incorporating the
second-order deformation gradient into the kinematic description. Moreover, the interatomic potential and the atomic
structure of carbon nanotube are incorporated into the proposed constitutive model in a consistent way. Therefore the
single-walled carbon nanotube can be viewed as a macroscopic generalized continuum with microstructure. Based on
the present theory, the energy and the size dependent mechanical properties of SWNT and graphite are predicted and
compared with the existing experimental and theoretical data.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes are tubular structures with nanometer diameter and micrometer length. Since the sin-
gle-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) are found by Iijima
(1991, 1993), there have been extensive researches on these nanomaterials. It has been found that carbon
nanotubes possess many interesting and exceptional mechanical and electronic properties (Ruoff et al.,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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2003; Popov, 2004). Therefore, it is expected that they can be used as promising materials for applications
in nanoengineering. In order to make good use of these nanomaterials, it is important to have a good
knowledge of their mechanical properties.

For the mechanical properties of carbon nanotubes, there have been numerous experiment studies. For
example, Treacy et al. (1996) estimated that the Young�s modulus of 11 MWNTs vary from 0.4 to 4.15 TPa
with an average of 1.8 TPa by measuring the amplitude of their intrinsic thermal vibrations. Based on the
experiment results, it is concluded that carbon nanotubes appear to be much stiffer than their graphite
counterpart. With the use of the similar experiment method, Krishnan et al. (1998) reported that the
Young�s modulus is in the range of 0.9–1.70 TPa with an average of 1.25 TPa for 27 SWNTs. Direct tensile
loading tests of SWNTs and MWNTs have also been performed by Yu et al. (2000a,b) and they reported
that the Young�s moduli are 0.32–1.47 TPa for SWNTs and 0.27–0.95 TPa for MWNTS, respectively. In
the experiment, however, it is very difficult to measure the mechanical properties of carbon nanotubes di-
rectly due to their very small size.

There are also many research works using atomistic modeling approaches to investigate the mechanical
properties of carbon nanotubes. Based on molecular dynamics simulation and Tersoff–Brenner atomic po-
tential, Yakobson et al. (1996) predicted that the axial modulus of SWNTs are ranging from 1.4 to 5.5 TPa
(note here that in their study, the wall thickness of SWNT was taken as 0.066 nm). By employing a non-
orthogonal tight binding theory, Goze et al. (1999) investigated the Young�s modulus of armchair and zig-
zag SWNTs with diameters of 0.5–2.0 nm. It was found that the Young�s modulus is dependent on the
diameter of the tube noticeably as the tube diameter is small. Popov et al. (2000) predicted the mechanical
properties of SWNTs using Born�s perturbation technique with a lattice-dynamical model. The results they
obtained showed that the Young�s modulus and the Poisson�s ratio of both armchair and zigzag SWNTs
depend on the tube radius as the tube radius are small. Other atomic modeling studies include first-princi-
ples based calculations (Zhou et al., 2001; Van Lier et al., 2000; Sánchez-Portal et al., 1999) and molecular
dynamics simulations (Iijima et al., 1996). Although these atomic modeling techniques seem well suited to
study problems related to molecular or atomic motions, these calculations are time-consuming and limited
to systems with a small number of molecules or atoms.

Comparing with atomic modeling, continuum modeling is known to be more efficient from computa-
tional point of view. Therefore, many continuum modeling based approaches have been developed for
study of carbon nanotubes. Based on Euler beam theory, Govindjee and Sackman (1999) studied the elastic
properties of nanotubes and their size-dependent properties at nanoscale dimensions, which will not occur
at continuum scale. Ru (2000a,b) proposed that the effective bending stiffness of SWNTs should be re-
garded as an independent material parameter. In his study of the stability of nanotubes under pressure,
SWNT was treated as a single-layer elastic shell with effective bending stiffness. By equating the molecular
potential energy of a nano-structured material with the strain energy of the representative truss and con-
tinuum models, Odega et al. (2002) studied the effective bending rigidity of a graphite sheet. Zhang et al.
(2002a,b,c, 2004) proposed a nanoscale continuum theory for the study of SWNTs by directly incorporat-
ing the interatomic potentials into the constitutive model of SWNTs based on the modified Cauchy–Born
rule. By employing this approach, the authors also studied the fracture nucleation phenomena in carbon
nanotubes. Based on the work of Zhang et al. (2002c), Jiang et al. (2003) proposed an approach to account
for the effect of nanotube radius on its mechanical properties. Chang and Gao (2003) studied the elastic
modulus and Poisson�s ratio of SWNTs by using molecular mechanics approach. In their work, analytical
expressions for the mechanical properties of SWNT have been derived based on the atomic structure of
SWNT. Li and Chou (2003) presented a structural mechanics approach to model the deformation of
carbon nanotubes and obtained parameters by establishing a linkage between structural mechanics and
molecular mechanics. Arroyo and Belytschko (2002a,b, 2004a,b) extended the standard Cauchy–Born rule
and introduced the so-called exponential map to study the mechanical properties of SWNT since the clas-
sical Cauchy–Born rule cannot describe the deformation of crystalline film accurately. They also established
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the numerical framework for the analysis of the finite deformation of carbon nanotubes. The results they
obtained agree very well with those obtained by molecular mechanics simulations.

In the present paper, a nanoscale continuum theory is established based on the higher order Cauchy–
Born rule to study the mechanical properties of carbon nanotubes. The theory bridges the microscopic
and macroscopic length scale by incorporating the second-order deformation gradient into the kinematic
description. Our idea is to use a higher-order Cauchy–Born rule to have a better description of the defor-
mation of crystalline films with one or a few atom thickness with less computational efforts. Moreover, the
interatomic potential and the atomic structure of carbon nanotube are incorporated into the proposed con-
stitutive model in a consistent way. Therefore SWNT can be viewed as a macroscopic generalized contin-
uum with microstructure. Based on the present theory, the energy and the size dependent mechanical
properties of SWNT and graphite are predicted and compared with the existing experimental and theoret-
ical data.

The paper is organized as follows: In Section 2, Tersoff–Brenner interatomic potential for carbon is
introduced. In Sections 3 and 4, motivations for the introduction of the higher order Cauchy–Born rule
are discussed. Section 5 gives the analytical expressions of the hyper-elastic constitutive model for SWNT
based on the higher order Cauchy–Born rule. With the use of the proposed constitutive model, the mechan-
ical properties (e.g. Young�s modulus and Poisson�s ratio) of SWNT are predicted in Section 6. Finally,
some concluding remarks are given in Section 7.
2. The interatomic potential for carbon

In this section, Tersoff–Brenner interatomic potential for carbon (Tersoff, 1988; Brenner, 1990), which is
widely used in the study of carbon nanotubes, is introduced as follows:
V ðrIJ Þ ¼ V RðrIJ Þ � BIJV AðrIJ Þ ð1Þ
where
V RðrÞ ¼ f ðrÞ De
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with the constants given in the following:
De ¼ 6.000 eV; S ¼ 1.22; b ¼ 21 nm�1; re ¼ 0.1390 nm

d ¼ 0.50000; a0 ¼ 0.00020813; c0 ¼ 330; d0 ¼ 3.5
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Based on this set of parameters, the corresponding equilibrium bond length can be determined by
oV
orIJ

¼ 0 ð6Þ
which is 0.145 nm for our case. This value is in good agreement with that of graphite (0.144 nm).
3. The limitation of the standard Cauchy–Born rule for crystal films

Cauchy–Born rule is a fundamental kinematic assumption for linking the deformation of the lattice vec-
tors of crystal to that of a continuum deformation field. Without consideration of diffusion, phase transi-
tions, lattice defect, slips or other non-homogeneities, it is very suitable for the linkage of 3D multiscale
deformations of bulk materials such as space-filling crystals (Tadmor et al., 1996; Arroyo and Belytschko,
2002a,b, 2004a,b). In general, Cauchy–Born rule describes the deformation of the lattice vectors in the fol-
lowing way:
b ¼ F � a ð7Þ

where F is the two-point deformation gradient tensor, a denotes the undeformed lattice vector and b rep-
resents the corresponding deformed lattice vector (see Fig. 1 for reference). In the deformed crystal, the
length of the deformed lattice vector and the angle between two neighboring lattice vectors can be expressed
by means of the standard continuum mechanics relations:
b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � Ca

p
and cos h ¼ a0 � Ca

kb0kkbk ð8Þ
where b 0 = F • a 0 (b 0 and a 0 denote the neighboring deformed and undeformed lattice vector, respectively)
and C = FT • F is the Green strain tensor measured from undeformed configuration. h represents the angle
formed by the deformed lattice vectors b and b 0. Though the use of Cauchy–Born rule is suitable for bulk
materials, as was first pointed out by Arroyo and Belytschko (2002a,b, 2004a,b), it is not suitable to apply it
directly to the curved crystalline films with one or a few atoms thickness, especially when the curvature
effects are dominated. One of the reasons is that if we view SWNT as a 2D manifold without thickness
embedded in 3D Euclidean space, since the deformation gradient tensor F describes only the change of
infinitesimal material vectors emanating from the same point in the tangent spaces of the undeformed
and deformed curved manifolds (see Fig. 2 for an illustration), therefore the deformation gradient tensor
F is not enough to give an accurate description of the length of the deformed lattice vector in the deformed
configuration especially when the curvature of the film is relatively large. In this case, the standard Cauchy–
Born rule should be modified to give a more accurate description for the deformation of curved crystalline
films, such as carbon nanotubes.
b=F• a a 

Fig. 1. Illustration of the Cauchy–Born rule.



Fig. 2. The Cauchy–Born rule applied directly to curved films.
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4. Higher order Cauchy–Born rule

In this section, an extension of the standard Cauchy–Born rule in order to alleviate its limitation for the
description of the deformation of curved atom films is presented. To this end, we introduce the higher order
deformation gradient into the kinematic relationship of SWNT. The same idea has also been shown by
Leamy et al. (2003).

From the classical nonlinear continuum mechanics point of view, the deformation gradient tensor F is a
linear transformation, which only describes the deformation of an infinitesimal material line element dX in
the undeformed configuration to an infinitesimal material line element dx in deformed configuration, i.e.
dx ¼ F � dX ð9Þ

As in Leamy et al. (2003), by taking the finite length of the initial lattice vector a into consideration, the

corresponding deformed lattice vector should be expressed as
b ¼
Z a

0

FðsÞds ð10Þ
Assuming that the deformation gradient tensor F is smooth enough, we can make a Taylor�s expansion
of the deformation field at s = 0, which is corresponding to the starting point of the lattice vector a.
FðsÞ ¼ Fð0Þ þ rFð0Þ � sþrrFð0Þ : ðs� sÞ=2þOðksk3Þ ð11Þ

Retaining up to the second order term of s in (11) and substituting it into (10), we can get the approx-

imated deformed lattice vector as
b � Fð0Þ � aþ 1
2
rFð0Þ : ða� aÞ ð12Þ
Comparing with the standard Cauchy–Born rule, it is obvious that with the use of this higher order term,
we can pull the vector F • a more close to the deformed configuration (see Fig. 3 for an illustration). By
retaining more higher-order terms, the accuracy of approximation can be enhanced. Comparing with the
exponent Cauchy–Born rule proposed by Arroyo and Belytschko (2002a,b, 2004a,b), it can improve the
standard Cauchy–Born rule for the description of the deformation of crystalline films with less computa-
tional effort.

It is worth noting that the dimension degeneration problem we wish to circumvent has its analogy in
shell theory. The goal of the shell theory is to find an approximation of the three-dimensional linear elastic
shell problem by a two-dimensional problem posed on the middle surface. This can always be accomplished
by employing the technique of asymptotic energy analysis and theory of C-convergence. The same tech-
niques can also be used in nanomechanics to develop the scheme for the passage from atomic to continuum
theory for thin films, nanotubes and nanorods. On this aspect, we refer the readers to the paper of Friesecke
and James (2000) and the references therein.



Fig. 3. Schematic illustration of the higher order Cauchy–Born rule.
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5. The hyper-elastic constitutive model based on higher order Cauchy–Born rule

With the use of the above kinematic relation established by the proposed higher order Cauchy–Born
rule, a constitutive model for SWNTs can be established. The key idea for continuum modeling of carbon
nanotube is to relate the phenomenological macroscopic strain energy density W0 per unit volume in the
material configuration to the corresponding atomistic potential.

Assuming that the energy associated with an atom I can be homogenized over a representative volume VI

in the undeformed material configuration (i.e. graphite sheet, see Fig. 4 for reference), the strain energy den-
sity in this representative volume can be expressed as
W 0 ¼ W 0ðjrI1j; jrI2j; jrI3jÞ ¼
X3

J¼1

V IJðrI1; rI2; rI3Þ=2V I ¼ W 0ðF;GÞ ð13Þ
and
rIJ ¼ F � RIJ þ G : ðRIJ � RIJ Þ=2 ð14Þ

where RIJ and rIJ denote the undeformed and deformed lattice vectors, respectively. VI is the volume of the
representative cell. F = Fijei � ej and G = $F = Gijkei � ej � ek are the first and second order deformation
gradient tensors, respectively. Note that here and in the following discussions, a unified Cartesian coordinate
Fig. 4. Representative cell corresponding to an atom I.
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system has been used for the description of the positions of material points in both of the initial and de-
formed configurations.

Based on the strain energy density W0, as shown by Sunyk and Steinmann (2003), the first Piola–Kirch-
hoff stress tensor P, which is work conjugate to F and the higher-order stress tensor Q, which is work con-
jugate to G can be obtained as
P ¼ oW 0

oF
¼ 1

2V I

X3

J¼1

f IJ � RIJ ð15Þ

Q ¼ oW 0

oG
¼ 1

4V I

X3

J¼1

f IJ � RIJ � RIJ ð16Þ
where fIJ is the generalized force associated with the generalized coordinate rIJ, which is defined as
fIJ ¼
oW
orIJ

ð17Þ
The corresponding strain energy density can also be rewritten as
W 0 ¼ W =2V I ð18Þ
where
W ¼
X3

J¼1

V IJ ðrIJ ; rIK ; hIJK ; K 6¼ I ; JÞ ð19Þ
denotes the total energy of the representative cell related to atom I caused by atomic interaction. VIJ is the
interatomic potential for carbon introduced in Section 2.

We can also define the generalized stiffness KIJIK associated with the generalized coordinate rIJ as
K IJIK ¼ of IJ

orIK
¼ o2W

orIJ orIK
ð20Þ
where the subscripts I, J and K in the overstriking letters, such as f, r, R and K, denote different atoms
rather than the indices of the components of tensors. Therefore summation is not implied here by the rep-
etition of these indices.

From (15) and (16), the tangent modulus tensors can be derived as
MFF ¼ o2W 0

oF � oF
¼ 1

2V I

X3

J¼1

X3

K¼1

½K IJIK � ðRIJ � RIKÞ� ð21Þ

MFG ¼ o
2W 0

oF � oG
¼ 1

4V I

X3

J¼1

X3

K¼1

½K IJIK � ðRIJ � RIKÞ� � RIK ð22Þ

MGF ¼ o2W 0

oG � oF
¼ 1

4V I

X3

J¼1

X3

K¼1

½K IJIK � ðRIJ � RIJ Þ� � RIK ð23Þ

MGG ¼ o2W 0

oG � oG
¼ 1

8V I

X3

J¼1

X3

K¼1

½K IJIK � ðRIJ � RIJ Þ� � ðRIK � RIKÞ ð24Þ
where [A � B]ijkl = AikBjl, ½A � B�ijkl ¼ AilBjk. Compared with the results obtained by Zhang et al. (2002c),
four tangent modulus tensors are presented here. This is due to the fact that second order deformation
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gradient tensor has been introduced here for kinematic description. Therefore, from the macroscopic point
of view, we can view the SWNT as a generalized continuum with microstructure.

Just as emphasized by Cousins (1978a,b), Tadmor et al. (1999), Zhang et al. (2002c) and Arroyo and
Belytschko (2002a), since the atomic structure of carbon nanotube is not centrosymmetric, the standard
Cauchy–Born rule can not be used directly since it cannot guarantee the inner equilibrium of the represen-
tative cell. An inner shift vector g must be introduced to achieve this goal. The inner shift vector can be
obtained by minimizing the strain energy density of the unit cell with respect to g
ĝðF;GÞ ¼ arg min
g

W 0ðF;G ; gÞ
� �

) oW 0

og

����
g¼ĝ

¼ 0 ð25Þ
Substituting (25) into W0(F,G,g), we have
Ŵ 0ðF;GÞ ¼ W 0ðF;G ; bgðF;GÞÞ ð26Þ

Then the modified tangent modulus tensors can be obtained as
M̂FF ¼ o2Ŵ 0

oF � oF
¼ MFF jg¼ĝ �

o2W 0

oF � og

o2W 0

og� og

� ��1
o2W 0

og� oF

" #�����
g¼ĝ

ð27Þ

M̂FG ¼ o2Ŵ 0

oF � oG
¼ MFGjg¼ĝ �

o2W 0

oF � og

o2W 0

og� og

� ��1
o2W 0

og� oG

" #�����
g¼ĝ

ð28Þ

M̂GF ¼ o
2Ŵ 0

oG � oF
¼ MGF jg¼ĝ �

o
2W 0

oG � og

o
2W 0

og� og

� ��1
o
2W 0

og� oF

" #�����
g¼ĝ

ð29Þ

M̂GG ¼ o2Ŵ 0

oG � oG
¼ MGGjg¼ĝ �

o2W 0

oG � og

o2W 0

og� og

� ��1
o2W 0

og� oG

" #�����
g¼ĝ

ð30Þ
where
MFF jg¼ĝ ¼
1

2V I

X3

J¼1

X3

K¼1

½K̂ IJIK � ððRIJ þ ĝÞ � ðRIJ þ ĝÞÞ� ð31aÞ

MFGjg¼ĝ ¼
1

4V I

X3

J¼1

X3

K¼1

½K̂ IJIK � ððRIJ þ ĝÞ � ðRIK þ ĝÞÞ� � ðRIK þ ĝÞ ð31bÞ
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1

4V I

X3
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K¼1
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1

8V I

X3
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X3

K¼1

½K̂ IJIK � ððRIJ þ ĝÞ � ðRIJ þ ĝÞÞ� � ððRIK þ ĝÞ � ðRIK þ ĝÞÞ ð31dÞ

K̂ IJIK ¼ o2W
orIJ � orIJ

����
g¼ĝ;rIJ¼r̂IJ

ð32Þ

r̂IJ ¼ F � ðRIJ þ ĝÞ þ G : ½ðRIJ þ ĝÞ � ðRIJ þ ĝÞ�=2 ð33Þ

o2W 0

oF � og

����
g¼ĝ

¼ 1

2V I
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J¼1

�X3

K¼1

ðK̂ IJIK � FÞ �
�
ðRIJ þ ĝÞ þ sym

�

�
ðK̂ IJIK � G

�
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�
þ f̂ IJ �2 1

�
ð34Þ
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oW 0

og

����
g¼ĝ

¼ 1

2V I
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J¼1

f̂ IJ � ½F þ sym
�

�
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� �
þ f̂ IJ ��

2 1
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ð36Þ
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og�og

����
g¼ĝ
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X3

K¼1
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�

�
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�

�
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�

�
G
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o2W 0

oG�og

����
g¼ĝ

¼ 1

4V I

X3

J¼1

X3

K¼1

ðsym�
�
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þðK̂ IJIK � FÞ �
�
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�
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1Þþðf̂ IJ �ðRIJ þ ĝÞ�21Þ
#

ð38Þ

o
2W 0

og� oG

����
g¼ĝ

¼ 1

2V I

X3

J¼1

X3

K¼1

1

2
ðF þ sym

�

�
ðG � ðRIJ þ ĝÞÞÞT � ðK̂ IJIK � ðRIK þ ĝÞ � ðRIK þ ĝÞÞ

� �� �"

þ sym
�

�
ðf̂ IJ�21� ðRIJ þ ĝÞÞ

#
ð39Þ
where 21 is the second order identity tensor. The symbols used in the above expressions are defined as
sym
�

�
½A � B � ðc� dÞ�

� �
ijk

¼ ðAipBpkncndj þ AipBpqkcqdjÞ=2 ð40Þ

A �
�
b

� �
ijk

¼ Aikbj ð41Þ

sym
�

�
ðB � bÞ

� �
ij

¼ ðBijrbr þ BirjbrÞ=2 ð42Þ

a �
�
A

� �
ijk

¼ ajAik ð43Þ

sym
�

�
G

� �
ijk

¼ ðGijk þ GikjÞ=2 ð44Þ

ða � bÞ � A½ �ijkl ¼ aibkAjl ð45Þ

sym
�

�
½A � B � ðc� d � dÞ�

� �
ijkl

¼ ðAipBplrcrdjdk þ AipBpqlcqdjdkÞ=2 ð46Þ

A �
�
c �

�
c

� �
ijkl

¼ Ailcjck ð47Þ
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sym
�

�
ða� A� bÞ

� �
ijkl

¼ ðajAikbl þ ajAilbkÞ=2 ð48Þ
6. Size-dependent mechanical properties of SWNTs

Based on the above explicit expressions of the constitutive tensors, we can calculate the strain energy per
atom and predict the size-dependent mechanical properties of SWNTs.

It is usually thought that SWNTs can be formed by rolling a graphite sheet into a hollow cylinder as
shown in Fig. 5. In the present calculation, a planar graphite sheet in equilibrium energy state is defined
as the undeformed configuration. The current configuration of the nanotube can be seen as deformed from
the initial configuration by the following mapping:
x1 ¼ X 1; x2 ¼ R sin
X 2

R
; x3 ¼ R cos

X 2

R
� R ð49Þ
where (X1,X2) are the material coordinates of a point in the undeformed configuration and (x1,x2,x3) are its
images in the current configuration. R is the radius of the modeled SWNT, which is described by a pair of
parameters (n,m). The radius R can be evaluated by R ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ mnþ n2

p
=2p with a ¼ a0

ffiffiffi
3

p
, where a0 is the

equilibrium bond length of the atoms in the graphite sheet.

6.1. The energy per atom for SWNTs and graphite

First, based on the present model, the energy per atom of the graphite sheet is calculated and the value of
�1.1801 Kg nm2/s2 is obtained. It can be found that the present value agrees well with that of �7.3756 eV
(1 eV = 1.6 · 10�19 Nm) given by Robertson et al. (1992) with the use of the same interatomic potential.

The energy per atom as the function of diameters for armchair and zigzag SWNTs relative to that of the
graphite sheet is also calculated. It is shown in Fig. 6 that the trend is almost the same for both armchair
and zigzag SWNTs. The energy per atom decreases with increase of the tube diameter with E(D) � E(1) =
O(1/D2), where E(1) represents the energy per atom for graphite sheet.
Fig. 5. Schematic illustration of rolling a graphite sheet into SWNT.
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For larger tube diameter, the energy per atom approaches that of graphite. On the whole, it can be
shown that the energy per atom depends obviously on tube diameters, but does not depend on tube chiral-
ity. For comparison, the results obtained by Robertson et al. (1992) with the use of both empirical potential
and first-principle method based on the same interatomic potential are also shown in Fig. 6. It can be found
that the present results are not only in good agreement with Robertson�s results, but also with those ob-
tained by Jiang et al. (2003) based on incorporating the interatomic potential (Tersoff–Brenner potential)
into the continuum analysis.

6.2. The elastic properties of SWNTs and graphite

In this section, we will discuss the size-dependent mechanical properties of SWNTs. As shown by Zhang
et al. (2002c), the Young�s modulus and the Poisson�s ratio of planar graphite can be obtained from M̂FF by
the following expressions:
E ¼ ðM̂FF Þ1111 �
ðM̂FF Þ21122
ðM̂FF Þ2222

ð50Þ

m ¼ ðM̂FF Þ1122
ðM̂FF Þ1111

ð51Þ
For curved graphites (SWNTs), we also use the above expressions to estimate their mechanical proper-
ties along the axial direction although the corresponding elasticity tensors are no longer isotropic as in
planar graphite case. Note that all calculations performed here are based on the Cartesian coordinate sys-
tem and the Young�s modulus E is obtained by dividing the thickness of the wall of SWNT, which is often
taken as 0.334 nm in the literature.

To illustrate the validity of the analytical formulations obtained in the preceding sections, the prediction
of the mechanical properties of graphite and SWNTs has been carried out based on Tersoff–Brenner po-
tential. The relevant numerical results are shown in Fig. 7.

As for the graphite, The resulting Young�s modulus is 0.69 TPa (see the dashed line in Fig. 7(a)), which
agrees well with that suggested by Zhang et al. (2002c) and Arroyo and Belytschko (2004b) based on the
same interatomic potential (represents by the horizontal solid line in Fig. 6(a)). The Poisson�s ratio
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Fig. 6. The energy (relative to graphite) per atom versus tube diameter.
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predicted by the present approach is 0.4295 (see the dashed line shown in Fig. 7(b)), which is also very close
to the value of 0.4123 given by Arroyo and Belytschko (2004b) using the same interatomic potential.

It is worth noting that the inner displacement has a significant influence on the Young�s modulus and the
Poisson�s ratio of graphite. If no inner relaxation is taken into consideration (i.e. omitting the second term
in the right hand side of (27)), the corresponding Young�s modulus is 1.01 TPa and the Poisson�s ratio is
0.16, which also agree well with the corresponding non-relaxation results obtained by Arroyo and
Belytschko (2004b). As pointed out by Arroyo and Belytschko (2004b), although these values are close
to the accurate ab initio data (Kudin et al., 2001), they do not represent the actual behavior of atomistic
systems described by Brenner�s potential.

As for SWNTs, Fig. 7(a) displays the variations of the Young�s modulus with different diameters and
chiralities. It can be observed that the trend is similar for both armchair and zigzag SWNTs and the
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influence of nanotube chirality is not significant. For smaller tubes whose diameters are less than 1.3 nm,
the Young�s modulus strongly depends on the tube diameter. However, for tubes diameters larger than
1.3 nm, the dependence becomes very weak. As a whole, it can be seen that for both armchair and zigzag
SWNTs the Young�s modulus increases with increase of tube diameter and a plateau is reached when the
diameter is large, which corresponds to the modulus of graphite predicted by the present method. The exist-
ing non-orthogonal tight binding results given by Hernándz et al. (1998), lattice-dynamics results given by
Popov et al. (2000) and the exponential Cauchy–Born rule based results given by Arroyo and Belytschko
(2002b) are also shown in Fig. 7(a) for comparison. Comparing with the results given by Hernándz et al.
(1998) and Popov et al. (2000), it can be seen that although their data are larger than the corresponding
ones of the present model, the general tendencies predicted by different methods are in good agreement.
From the trend to view, the present predicted trend is also in reasonable agreement with that given by
Robertson et al. (1992), Arroyo and Belytschko (2002b), Chang and Gao (2003) and Jiang et al. (2003).
As for the differences between the values of different methods, it may be due to the fact that different param-
eters and atomic potential are used in different theories or algorithms (Chang and Gao, 2003). For example,
Yakobson et al. (1996) result of surface Young�s modulus of carbon nanotube based on molecular dynam-
ics simulation with Tersoff–Brenner potential is about 0.36 TPa nm, while Overney et al. (1993) result based
on Keating potential is about 0.51 TPa nm. Recent ab initio calculations by Sánchez-Portal et al. (1999)
and Van Lier et al. (2000) showed that Young�s modulus of SWNTs may vary from 0.33 to 0.37 TPa nm
and from 0.24 to 0.40 TPa nm, respectively. Furthermore, it can be found that our computational results
agree well with that given by Arroyo and Belytschko (2002b) with their exponential Cauchy–Born rule.
They are also in reasonable agreement with the experimental results of 0.8 ± 0.4 TPa given by Salvetat
et al. (1999).

From Fig. 7(b), the effect of tube diameter on the Poisson�s ratio is also clearly observed. It can be seen
that, for both armchair and zigzag SWNTs, the Poisson�s ratio is very sensitive to the tube diameters espe-
cially when the diameter is less than 1.3 nm. The Poisson�s ratio of armchair nanotube decreases with
increasing tube diameter but the situation is opposite for that of the zigzag one. However, as the tube diam-
eters are larger than 1.3 nm, the Poisson�s ratio of both armchair and zigzag SWNTs reach a limit value i.e.
the Poisson�s ratio of the planar graphite. For comparison, the corresponding results suggested by Popov
et al. (2000) are also shown in Fig. 7(b). It can be observed that the tendencies are very similar between the
results given by Popov et al. (2000) and the present method although the values are different. Moreover, it is
worth noting although many investigations on the Poisson�s ratio of SWNTs have been conducted, there is
no unique opinion that is widely accepted. For instance, Goze et al. (1999) showed that the Poisson�s ratio
of (10,0), (20,0), (10,0) and (20,0) tubes are 0.275, 0.270, 0.247 and 0.256, respectively. Based on a molec-
ular mechanics approach, Chang and Gao (2003) suggested that the Poisson�s ratio for armchair and zigzag
SWNTs will decrease with increase of tube diameters from 0.19 to 0.16, and 0.26 to 0.16, respectively. In
recent ab initio studies of Van Lier et al. (2000), even negative Poisson�s ratio is reported.

It also can be seen from Fig. 7(b) that the obtained Poisson�s ratio is a little bit high when tube diameter is
less than 0.3 nm. It may be ascribed to the fact that when tube diameter is less than 0.3 nm, because of the
higher value of curvature, higher order (P2) deformation gradient tensor should be taken into account in
order to describe the deformation of the atomic bonds more accurately. Another possible explanation is that
for such small values of diameter, more accurate interatomic potential should be used in this extreme case.
7. Concluding remarks

In the present paper, a higher order Cauchy–Born rule has been adopted for the modeling of carbon
nanotubes. In the present model, by including the second order deformation gradient tensor in the kine-
matic description, we can alleviate the limitation of the standard Cauchy–Born rule for the modeling of
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nanoscale crystalline films with less computational efforts. Based on the established relationship between
the atomic potential and the macroscopic continuum strain energy, analytical expressions for the tangent
modulus tensors are derived. From these expressions, the hyper-elastic constitutive law for this generalized
continuum can be obtained. With the use of this approach and the Tersoff–Brenner atomic potential for
carbon, the size dependent mechanical properties of carbon nanotube are predicted. The obtained results
agree well with those obtained by other experimental, atomic modeling and continuum concept based
studies.

It should be pointed out that the present method is not limited to a specific interatomic potential and the
study of SWNTs. It can also be applied to calculate the mechanical response of MWNTs. The proposed
model can be further applied to other nano-film materials, such as BN and BC3 nanotubes. The key point
is to view them as generalized continuum with microstructures.
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moduli of single-walled carbon nanotube ropes. Physical Review Letters 82, 944–947.
Sánchez-Portal, D., Artacho, E., Soler, J.M., 1999. Ab initio structural, elastic, and vibrational properties of carbon nanotubes.

Physical Review B 59, 12678–12688.
Sunyk, R., Steinmann, P., 2003. On higher gradients in continuum-atomic modeling. International Journal of Solids and Structures 40,

6877–6896.
Tadmor, E., Ortiz, M., Phillips, R., 1996. Quasicontinuum analysis of defects in solids. Philosophy Magazine A 73, 1529–1563.
Tadmor, E.B., Smith, G.S., Bernstein, N., Kaciras, E., 1999. Mixed finite element and atomistic formulation for complex crystals.

Physical Review B 59, 235–245.
Tersoff, J., 1988. New empirical approach for the structure and energy of covalent systems. Physical Review B 37, 6991–7000.
Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., 1996. Exceptionally high Young�s modulus observed for individual carbon nanotubes.

Nature 381, 678–680.
Van Lier, G., Van Alsenoy, C., Van Doren, V., Geerlings, P., 2000. Ab initio study of the elastic properties of single-walled carbon

nanotubes and graphene. Chemical Physics Letter 326, 181–185.
Yakobson, B.I., Brabec, C.J., Bernholc, J., 1996. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review

Letters 76, 2511–2514.
Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S., 2000a. Tensile loading of ropes of single wall carbon nanotubes and their mechanical

properties. Physical Review Letters 84, 5552–5555.
Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000b. Strength and breaking mechanism of multiwalled

carbon nanotubes under tensile load. Science 287, 637–640.
Zhang, P., Huang, Y., Gao, H., Hwang, K.C., 2002a. Fracture nucleation in single-wall carbon nanotubes under tension: a continuum

analysis incorporating interatomic potentials. Journal of Applied Mechanics 69, 454–458.
Zhang, P., Huang, Y., Geubelle, P.H., Hwang, K.C., 2002b. On the continuum modeling of carbon nanotubes. Acta Mechanica Sinica

18, 528–536.
Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C., 2002c. The elastic modulus of single-walled carbon nanotubes: a

continuum analysis incorporating interatomic potentials. International Journal of Solids and Structures 39, 3893–3906.
Zhang, P., Jiang, H., Huang, Y., Geubelle, P.H., Hwang, K.C., 2004. An atomistic-based continuum theory for carbon nanotubes:

analysis of fracture nucleation. Journal of the Mechanics and Physics of Solids 52, 977–998.
Zhou, G., Duan, W.H., Gu, B.L., 2001. First-principles study on morphology and mechanical properties of single-walled carbon

nanotube. Chemical Physics Letters 333, 344–349.


	Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy - Born rule
	Introduction
	The interatomic potential for carbon
	The limitation of the standard Cauchy ndash Born rule for crystal films
	Higher order Cauchy ndash Born rule
	The hyper-elastic constitutive model based on higher order Cauchy ndash Born rule
	Size-dependent mechanical properties of SWNTs
	The energy per atom for SWNTs and graphite
	The elastic properties of SWNTs and graphite

	Concluding remarks
	Acknowledgements
	References


